Sediment Dating of a sedimentary core from Moulay Bousselham region using $^{210}\mathrm{Pb}$ and $^{137}\mathrm{Cs}$

<u>Fadoua Rokne</u>^{1,*}, Hasna Ait Bouh², Nadia Ziad³, Abdelmoughit Laissaoui², Azzouz Benkdad² ¹Ibn Tofail University, Faculty of Sciences, Kenitra, Morocco; ²Centre National de l'Energie des Sciences et des Techniques Nucléaires (CNESTEN), Rabat, Morocco; ³National School of Applied Sciences (ENSA), Kenitra, Morocco ^{*}E-mail: fadoua.rokne@gmail.com

The sediments are valuable historical archives and their study (in particular the sedimentary column) makes it possible to trace the history of terrigenous and/or anthropic inputs in lacustrine, marine and estuarine environments.

In this work, we were interested in the study of a sedimentary core collected in 2009 in the region of Moulay Bousselham by considering two radionuclides, which are:

- The ²¹⁰Pb which is a natural radionuclide allowing the reconstruction of the geochronology via the estimation of the ages and the accumulation rates of the deposited sediments during the last 150 years;

- The ¹³⁷Cs, an artificial radionuclide which has the advantage of providing two absolute dates (1963-1964 and 1986).

The determination of these radionuclides was carried out by Gamma Spectrometry using a Hyper-Pure Germanium. Then, based on a number of hypotheses concerning the sedimentation rate, the ²¹⁰Pb flux and the surface activity, we have applied three mathematical models of dating by the ²¹⁰Pb, namely:

- The CF-CSR model (Constant Flux-Constant Sedimentation Rate);

- The CIC model (Constant Initial Concentration);

- The CRS model (constant Rate of Supply).

The results obtained show that the sedimentation rate is of the same order of magnitude for the three models CF-CSR, CIC and CRS (respectively 0.38, 0.31 and 0.26 g/cm²). Also, the dates obtained by the three models are essentially the same from the sampling date to the 1960s. However, CRS experienced a divergence from the other models for the lowest dates (deeper layers); this can be explained by the persistence of significant levels of 210 Pb at the base of the core making it difficult to accurately assess the 210 Pb sediment inventories required for the CRS method.

Keywords: ²¹⁰Pb, ¹³⁷Cs, Gamma Spectrometry, dating sediment, CF-CRS model, CRS model, CIC model, accumulation rates, chronology